上篇文章中我们介绍到,在美颜sdk人脸识别中,所用到的其中一种图像特征技术:HOG特征。那么今天我们再讲下剩余的两项图像特征技术。

一、LBP特征技术
局部二值模式是一种用来描述图像局部纹理特征的算子。关于与LBP特征的计算流程如下:
1、将检测窗口划分为16X16个cell。
2、对于每个cell中的一个像素,将相邻的8个像素的灰度值与其进行比较,若周围的像素值大于中心的像素值,则该像素点的位置被标记为1,否则标记为0.这样,3X3邻域内的8个点经比较可产生8位二进制数,即得到了该窗口中心像素点的LBP值。
3、计算每个cell的直方图,即每个数字出现的频率,然后对该直方图进行归一化处理。
4、将得到的每个cell的统计直方图进行连接,成为一个特征向量,也就是整幅图的LBP特征描述。

二、Haar-like特征
Haar-like特征分为3类:边缘特征、线性特征和对角线特征。3种类型的特征组合成最早期的Haar-like特征模板。特征模板内有白色和黑色两种矩形,并定义了该模板的特征值为白色矩形像素和减去黑色矩形像素的和。
之后的Haar-like经过演化,最终分为:边缘特征、线性特征和中心特征。
Haar-like特征的计算方法如下:
以上述特征的模板在图片中滑动。比如图中第一个边缘特征的模板a是2x1个像素,定义a在24x24的图片子窗口中滑动。每滑动一次会有一个值,则可产生23X24个值,也就是Haar特征值。同理,其他模板都可以产生若干个Haar特征值。将它们组成一个向量,就是Haar-like特征向量。
此外,因为Haar-like特征包含了3个图像特征类—边缘特征、线性特征、中心和对角特征,能够最大程度地保留人脸图像的信息,是美颜sdk中人脸识别中最常用的特征,也是OpenCV人脸识别算法解决方案才有的特征。
以上,就是美颜sdk人脸识别中,所有的图像特征技术,如果您对美颜sdk开发感兴趣,欢迎咨询官方客服。
声明:本文由美狐原创,未经允许禁止转载,谢谢合作。
- 如何用美颜SDK提升直播留存?从美型算法到视觉体验的全链路优化
- 美型不止于“变美”:美颜SDK如何定义下一代直播视觉标准?
- 打造沉浸式视觉体验:AI美颜SDK与虚拟特效的融合创新前瞻
- 未来直播美颜SDK发展趋势前瞻:AI算法与用户体验的双重进化
- 美颜SDK赋能直播产业链:特效技术如何驱动用户付费升级?
- 2025年直播美颜SDK趋势解析:AI特效、虚拟人互动与沉浸式直播体验新方向
- 从技术创新到体验革新:美颜SDK特效功能引领直播平台的下一波浪潮
- AI数字人虚拟主播与AI上妆:智能美妆SDK开启沉浸式直播新纪元
- 从滤镜到智能上妆:美颜SDK重构直播电商的“颜值经济”
- 直播行业升级:美颜SDK如何助力品牌打造视觉竞争力与用户信任感?
- 打造沉浸式视觉体验:AI美颜SDK与虚拟特效的融合创新前瞻
- 从技术创新到体验革新:美颜SDK特效功能引领直播平台的下一波浪潮
- AI滤镜、动态贴纸与直播美颜SDK的未来趋势:从技术创新到商业应用的全面解析
- 直播间更好玩了!美颜SDK+动态贴纸如何提升互动体验?
- 美颜SDK的未来:人脸美型算法如何拥抱大模型与实时AI?
- 美型即留存:短视频与直播场景下美颜SDK的价值链构建
- 为什么你的直播平台需要美颜SDK动态贴纸?一文看懂用户粘性提升密码
- 打造高互动直播体验:一站式接入美颜SDK与贴纸功能
- 美颜SDK赋能智能美妆,助力直播平台提升用户转化率
- 美颜SDK选型与集成实战:直播APP美颜功能搭建全流程
您当前的位置: